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Abstract 

Based on computer simulations in direct as well as in 
reciprocal space, a geometrical model for the transfor- 
mation from decagonal AI-Co-Ni to an orientationally 
twinned crystalline nanodomain structure is derived. 
Mapping the atomic positions of the quasicrystal onto 
the corresponding positions of its (4, 6)-approximant 
leads to a patchwork-like arrangement of crystalline 
nanodomains. The atomic displacements necessary to 
transform the quasicrystal into the nanodomain struc- 
ture are determined locally. The optimum orientation of 
the approximant unit cells building the nanodomains is 
obtained by minimizing the sum of the corresponding 
displacements. Approximately 50% of the resulting 
atomic shifts are less than 1 A, and more than 90% less 
than 1.5 ~,. These results are verified by comparison 
with previous experimental observations. An inter- 
mediate state of the transformation is related to a 
one-dimensional quasicrystal. It is interpreted within 
the approach of a linear growth model. Slight changes 
of the approximant lattice parameters as induced by 
temperature strongly influence domain size and distri- 
bution. Correlations between the nanodomains are 
referred to the discrete periodic average structure 
common to both the decagonal phase and the 
approximant structure. 

1. Introduction 

Crystalline phases showing a close structural relation- 
ship to quasicrystals are well known for icosahedral as 
well as for decagonal structures. In the embedding 
approach (cf. Yamamoto, 1996, and references therein), 
d-dimensional (dD) quasiperiodic structures result from 
an irrational cut of an n-dimensional (nD with n > d) 
hypercrystal structure with dD physical space. If the cut 
becomes rational by shearing the nD hypercrystal 
parallel to perpendicular space, a periodic crystal 
structure called rational approximant is obtained. Both, 
approximant and quasicrystal, show locally the same 
structure motifs due to their hyperspace relationship 
(cf. Goldman & Kelton, 1993, and references therein). 

© 1998 International Union of Crystallography 
Printed in Great  Britain - all rights reserved 

Consequently, the intensity distribution of diffraction 
patterns of quasicrystals and their approximants are 
very similar. Moreover, in the case of multiply twinned 
microcrystalline approximants, the diffraction patterns 
cannot be distinguished from those of quasicrystals by 
standard low-resolution X-ray experiments (Estermann 
et al. , 1994). 

First experimental investigations on the phase 
transformations for AI-Cu-Co-type decagonal quasi- 
crystals (with a characteristic average translation period 
of about 4 A) have been performed using HRTEM and 
selected-area electron diffraction (SAED) (Hiraga et 
al., 1991; Audier et al., 1993). Transitions induced under 
an electron or Ar÷-ion beam have been reported 
(Zhang & Urban, 1992; Qin et al., 1995). More recently, 
temperature-dependent neutron powder diffraction 
experiments and X-ray single-crystal studies have been 
performed (Dong et al., 1991; Fettweis et al., 1995; 
Baumgarte et al., 1997). All these experiments are 
evidence of a reversible decagonal quasicrystal-to- 
crystal transformation leading to a domain structure on 
the nanometre scale of orientationally twinned 
approximants. Experimental studies from high-resolu- 
tion electron microscopy (HRTEM) lead to a domain 
size of a few hundred ~ngstr6ms (Hiraga et aL, 1991; 
Song et al., 1993), while from high-resolution X-ray 
diffraction coherence lengths of several thousand 
~ngstr0ms have been reported (Kalning et al., 1997). 

The main emphasis is put on the atomic structure and 
lattice parameters of the crystalline phase forming these 
domains. CsCl-type structures, structures with b.c.c, or 
f.c.c, lattices, have been reported with lattice parameters 
of about 3 A (Zhang & Urban, 1992; Qin et al., 1995) as 
well as different orthorhombic phases (cf. Dong et al., 
1991) and monoclinic (or centred orthorhombic) 
structures. These apoproximants show the periodicity of 
the quasicrystal (4 A) in the unique c direction and a -- 
b _~ 20, _~ 32 or _~ 52 A,, y = 144 or 108 °, respectively 
(cf. Hiraga et al., 1991; Audier et al., 1993; Fettweis et al., 
1995). Additionally, the transition passes through an 
intermediate one-dimensional quasicrystalline phase 
(Kalning et al., 1997). However, a uniform interpreta- 
tion of all the different observations has not been given 
yet and none of the approximant structures involved in 
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the transition mechanism has been determined up to 
n o w .  

Most theoretical studies on quasicrystal-crystal 
transformations use the nD approach describing the 
transformation in terms of continuous hyperlattice 
deformations by phason strain (a shear deformation of 
the hyperlattice). Alternatively, a description in terms 
of tilings and reshuffling of atoms by phason flips is 
applied (cf. Yacamfin & Torres, 1993). Janssen (1991) 
discussed direct-space deformations of the six-dimen- 
sional hyperlattice to describe formally a phase trans- 
formation from an icosahedral phase to a rational 
approximant. The action of linear phason strain trans- 
forming the decagonal quasicrystal to its monoclinic 
approximants via a one-dimensional quasicrystal can 
also be described in reciprocal space (Zhang & Kuo, 
1990; Zhang et al., 1993). The shift of Bragg peaks is a 
function of the perpendicular-space component of the 
diffraction vector H -L. It is described by the product 
MH ±, with the shear matrix M. 

An alternative method is the description in terms of 
the deviation from a reference lattice. Duneau & Oguey 
(1990) proved that, for every quasiperiodic structure 
fulfilling particular conditions, a mapping to a periodic 
reference lattice with bounded displacements exists. 
Tol6dano & Dmitriev (1996) demonstrated that points 
where mass densities of quasicrystal and approximant 
coincide form a periodic lattice (T lattice). Hence, the 
structure is identical at the lattice nodes and similar in 
the vicinity of the nodes, whereas in regions between 
two nodes any similarity is lost. The T lattice is 
incommensurate to the corresponding approximant. 
Based on the T lattice, a quasicrystal-crystal phase 
transformation could be described partly by a local 
homogeneous deformation. For the regions without 
similarity, splitting and fusion of atomic sites are 
postulated, together with diffusion of atoms and a 
residual amount of disorder. Multiple twinning and/or 
microcrystalline states are proposed leading to small 
rotational (and translational) ordered domains of large 
structural elements of the quasicrystal. 

The monoatomic transformation model proposed by 
Coddens & Launois (1991) is based on a direct 
comparison of quasicrystalline and approximant struc- 
ture on a rather small scale (~'80,4,). Structural changes 
are related to a phason flip mechanism. Only one 
distance (between the minima of a double-well poten- 
tial) is used to correlate all atoms in the quasicrystal 
with atomic positions in the approximant structure. This 
is always possible because all positions are described by 
the same Z-module. Consequently, the smaller the 
distances between quasicrystal and approximant atomic 
positions are, the more consecutive phason flips are 
necessary for each atom. As flip sequences might even 
involve positions that are occupied, a whole cascade of 
correlated jumps would be necessary to achieve a 
transformation of a larger area. However, a real-space 

mechanism for the quasicrystal--crystal transformation 
on the atomic scale in agreement with experimental 
observations has not been derived yet. 

2. Characteristics of the structure models 

2.1. Quasicrystal  

An idealized four-dimensional structure model of 
one quasiperiodic atomic layer has been constructed 
based on the structure of decagonal Al~0Co~Ni15, 
space group P l O s / m m c ,  a q = 0 . 2 6 3 6 ( 1 )  A -1, a ~ =  
0.24506 (3) A- l ;  dq ~ - -  3.3931 (9) ,A, d 5 = 4.0807 (3) 
and corresponding aq = 3.794 (1) A, a 5 = 4.0807 (3) A 
(Steurer et al., 1993). Two atomic surfaces with regular 
pentagonal shape (radius k = 2/5aq) are at special 

2222 and 4444 positions 5-~ 5-~ on the body diagonal of the 
hyperrhombohedral four-dimensional unit cell. The 
first one consists of A1 centred by a r-times 
[r = 2cos(rr/5)_~ 1.618...] smaller inner decagon of 
transition metal (TM), the latter consists of AI only. As 
Co and Ni differ by only one electron, they are not 
distinguishable in conventional X-ray experiments and 
all simulations were performed with TM set to Co. 

The structure of the quasicrystal layer is a subset of a 
Penrose tiling with skinny and fat rhombi of 2raq/5 ~_ 
2.456,4, edge length. Since only one of the vertices on 
the shorter diagonal of the skinny rhomb is occupied, 
the shortest distance in the plane is exactly the length of 
the rhomb edge. The three-dimensional physical space 
structure is built up by two of these quasiperiodic layers 
with stacking sequence A a  (a denotes layer A rotated 

3 according to the by zr/5) at relative z positions 1 and 
five-dimensional space group P l O s / m m c .  

2.2. Rational  approx iman t  

Lattice parameters for the rational (n, m) approx- 
imant can be derived using the quasicrystal constant aq 
according to Edagawa et al. (1991): 

a o = aq ~ rn+2(3  --  r )1 /2(2  "l t- l") 1/2 

b o = aq 2 zan+2(3 __ r ) l /2  (1) 

aq = 3.794 ,A. 

Here, the (4, 6)-approximant is constructed with the 
lattice parameters ao--~60.89, bo--~83.81 ,~ in the 
orthorhombic C-centred setting, i.e. a m = b m  ~" 5 1 . 8 0 / ~ ,  
y -- 108 ° in the monoclinic one. The periodicity in the c 
direction is ~4.08 ,A for both the quasicrystal and the 
approximant, the stacking sequence is the same. This 
specific approximant was found in the systems A1-Cu- 
Co(-Si) and AI-Co-Ni by HRTEM, SAED and high- 
resolution X-ray diffraction (Song et al., 1993; Fettweis 
et al., 1994; Kalning et al., 1994). The structure is built 
from the pentagonal clusters (diameter ~20 A) that 
decorate the quasiperiodic tiling (Fig. 1). As a result of 
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lowering the symmetry from PlOs/mmc to Ccmm, the 
approximant structure is generated in five possible 
orientations, each one rotated relative to each other by 
2ml5 (i = 1 . . . . .  4). 

3. Simulation technique 

All calculations have been performed with the model 
structures described above, generated up to a size of 
8000 × 8000 × 4 A, including about 18 million atoms. 

2.3. Point densities 

The point density of the quasiperiodic layer can be 
derived from that of the Penrose tiling (Steurer & 
Haibach, 1998a) [equation (2)]. Considering only two 
atomic surfaces present, each r-times larger than in the 
original Penrose tiling, results in equation (3). 

= 5 _.2/'3 /9pe n ~Uq v -  + r)l/2/r3 (2) 

/gq : /gpen[r4/(1 -~- r2)] 

5 *2 : ~aq r /(2 + r) 1/2 

"-" 0.147768593 . . . .  (3) 

With the number of atoms Nat in one layer of the 
monoclinic approximant unit cell, the point density of 
the approximant layer is 

~gin -- 25-aq2( 2 q- r)llZUAt/r14 

0.147768385... with NAt -- 377. (4). 

ThUS, the difference in point densities of "--,0.2 in 106 is 
physically irrelevant. 
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Fig. 1. 70 x 70,~ section of the idealized quasicrystal structure 
projected along as. One monoclinic (4, 6)-approximant unit cell is 
marked. AI positions are given by circles, TM atoms by squares; 
filled symbols denote an atomic layer at a5/4, open symbols at 
3a5/4. 

3.1. Atomic displacements 

The atomic displacements necessary for a displacive 
phase transformation are determined by mapping the 
quasicrystal structure onto the approximant structure. 
For each atomic position in the quasiperiodic layer, all 
possible displacement vectors to the nearest positions 
in the approximant layer are calculated within a radius 
of the shortest interatomic distance (2.456 A). The 
shortest vectors are kept as minimum atomic displace- 
ment for subsequent calculations. Rejected atoms, as 
well as atoms without one-to-one correspondence 
within the given radius, are collected separately. This 
procedure is iterated until no more new atomic 
displacements are obtained. The displacement maps 
(cf. Fig. 2) are calculated for each orientation of the 
approximants. 

3.2. Domain formation 

To preserve the basic structural elements ('-,20 ,~ 
clusters), the domain formation is restricted to 
complete monoclinic approximant unit cells. The 
information on the displacements is encoded in coor- 
dinates of the corresponding approximant unit cell, 
together with its origin and orientation and the integral 
atomic shifts per unit cell (Fig. 3). A nanodomain 
structure (Figs. 5 and 6) is achieved by selecting locally 
the approximant orientation with the minimum integral 
shifts. One approximant lattice is taken as a reference 
coordinate system. Around each lattice node, within a 
circle of diameter equal to the long diagonal of the unit 
cell, the approximant orientation with smallest integral 
shifts is selected. This keeps the overlap small at the 
cost of partly unfilled domain boundaries. The algo- 
rithm produces a kind of texture, i.e. slight deviations 
from the fivefold symmetrical domain distribution 
expected. It does not influence, however, the general 
appearance of the nanodomain structure. 

The determination of distances, integral shifts per 
unit cell and the selection of domain orientations are all 
performed in the first layer as the second layer is 
constrained by symmetry relations. Models centred at 
the unique 105 axis of the quasicrystal exhibit a fivefold 
symmetrical domain distribution in any case (biased by 
some texture effects). Consequently, to avoid such 
unique settings, all calculations were performed in the 
positive quadrant only, to enlarge the area concerned 
without effecting the computational effort. 
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3.3. Simulat ing  X - ray  dif fraction 

For X-ray diffraction simulations, all models are 
expanded in the periodic direction to a full period 
according to their symmetry. Explicit Fourier transfor- 
mation is calculated for one approximant unit cell in 
each of the five possible orientations, followed by a 
summation of the complex structure factors over all 
unit-cell origins. All calculations are performed with a 
resolution up to 2.5 x 1 0 - 5 A  -1. No fast Fourier 
transform (FFT) algorithm or factorization is used to 

avoid inherent restrictions that could veil intensity 
information between Bra~g reflections. For the largest 
model (8000 x 8000 x 4 A),  a nanodomain structure of 
+8000 A along x and y directions was generated by 
applying fivefold symmetry to the data of the positive 
quadrant. 

Fourier transformation of the first quadrant and its 
rotated counterparts with a subsequent summation of 
intensities gives a diffraction pattern of incoherently 
scattering regions. This can be expected in the case of a 
multi-nucleation regime with independent domains. 
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Fig. 2. Displacements for a transformation of decagonal A I -Co-N i  
into a single-crystalline (4, 6)-approximant. The origins of the 
quasicrystal and the approximant coincide at (0, 0). (a) Displace- 
ments next to the origin, (b) 3600 .A away (both 400 x 400 
sections). It is obvious that in (b) many more displacements are 
necessary for the quasicrystal-crystal transformation. 

4. Direct-space properties of the nanodomain structure 

4.1. Disp lacement  statistics 

Mapping the quasicrystal to a single approximant 
yields 93% of all resulting displacements smaller than 
the shortest interatomic distance (2.456 ,~). 7% of the 
displacement exceed the maximum radius and can be 
assigned to atoms without one-to-one correspondence 
in quasicrystal and approximant. They are partly related 
to triangles of A1 positions (with two edges at 2.456 
and the third one r-times larger) found in different 
orientations within the alternating A1/TM decagons of 
the cluster. Mapping these triangles according to the 
shortest possible displacements may allow two pairs of 
atoms to be connected by small vectors, while the 
vector for the third pair exceeds the allowed value. If all 
atoms are considered simultaneously, all pair vectors 
would be small enough to be accepted. Although two 
vectors are getting longer, the sum of the three shifts 
would be even smaller. However, an algorithm not only 

~i :" :S 

Fig. 3. Total sum of atomic shifts per approximant unit cell displayed 
as grey values, ranging from black (minimum sum of shifts) to white 
(maximum) for an 8000 x 8000 ,A single-crystalline approximant. 
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taking pair correlations into account but minimizing 
also the global sum of displacements could not be 
applied owing to the huge number of atoms. Additional 
atoms without one-to-one mapping occur if quasicrystal 

displacements with varying length occur. 49.0% of the 
shifts mapping the 8000 × 8000 A quasicrystal to a 
single-crystalline approximant are less than 1 A while 
8.3 % are larger than 1.5 A. However, the formation of a 

atoms fall into the empty pentagons (edge length r nanodomain structure instead of a single approximant 
times 2.456 A) of atomic positions in an approximant 
cluster and v ice  versa .  

o 

Within the first 800 × 800 A, null vectors, resulting 
from absolute coincidence of atomic positions in 
quasicrystal and approximant, and simple flips [vector 
length 2 a q / ( 5 r )  "~ 0.938 A] dominate (Figs. 2 and 3). 
95.7% of all shifts are of these lengths, with a ratio of 
nearly, one to one, while 4.0% of the vectors are of 
1.80 A length. By enlarging the model, many other 
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reduces the total sum of shifts by one fifth (Fig. 4). 
As the atomic species were not distinguished, 

chemical disorder is induced. To obtain a chemically 

Fig. 5. Nanodomain structure calculated in an area of 0 < x, y < 
8000.~. The different domain orientations are indicated by 
different colours. 
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Fig. 4. (a) Bar graph displaying all displacements obtained from 
mapping an 8000 x 8000 A quasicrystal to a single-crystalline 
approximant. Numbers given on the x axis are maximum values [A] 
for the counting interval above. (b) Distribution functions of the 
atomic displacements necessary for the transformation to a single- 
crystalline approximant (broken line) and an orientationally 
twinned nanodomain structure (solid line) as calculated from the 
simulations. 
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Fig. 6. Nanodomain structure calculated in an area of 8000 A in 
diameter around the origin of the quasicrystal model. The different 
domain orientations are indicated by different colours. 
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ordered 8000 x 8000 ,~ approximant, single-crystal 
atomic diffusion for 39.9% of the atoms would be 
necessary. Up to now, no single crystals of the (4, 6)-AI- 
Co-Ni approximant could be prepared. Hence, atomic 
diffusion may indeed be kinetically hindered. The 
formation of a nan•domain structure as simulated, 
however, keeps the chemical disorder smaller. A certain 
amount of disorder seems to be likely as indicated by 
diffuse scattering on X-ray diffraction patterns. For a 
small model, restricting displacement vectors to 
chemically identical atoms only enlarges the total 
amount of displacements necessary as well as the 
number of rejected atoms with respect to the constant 
shift limit. The resulting nan•domain structure differs 
slightly from the one observed concerning the domain 
distribution. 

4.2. Domain  distribution and boundaries 

The 8000 x 8000 ,~ nan•domain structure (Fig. 5) is 
built from unit cells of the approximants. It contains 
22151 unit cells that mimic the symmetry of the quasi- 
crystal. Considering a model of equal size centred at the 
origin (i.e. 4-4000 x -t-4000 ,~), nearly 3450 cells for all 
possible approximant orientations are distributed in 
an almost tenfold manner (Fig. 6). In the inner part, 
dendritic growth along the long diagonal of the n o n • -  
clinic unit cell dominates, while in the outer parts 
relatively large irregular-shapoed domains are found. As 
most domains exceed 1000 A in diameter, only a few 
small domains are present. 

Approximant unit cells are locally selected according 
to the sum of displacements. The minimum distance for 
two neighbouring cell centres is restricted to one cell 
diameter for minimizing overlap. Consequently, domain 
boundaries are partly left empty. To fill them properly, a 
growth rule completing the clusters correctly would be 
needed. For a first crude model, the empty space at the 
domain boundaries is filled with atoms from the 
quasicrystalline structure. These regions may represent 
the remaining original quasicrystal matrix, i.e. parts of 
the structure where the transformation is not yet 
completed. Since the structural  units are identical in 
both quasicrystal and approximant, the additional 
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Fig. 7. Projection along e (as) for a 70 x 70,~ section of the 
nanodomain structure built from complete monoclinic (4,6)- 
approximant unit cells (filled symbols) with atoms from the 
quasicrystal structure filling domain boundaries (open symbols). 
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Fig. 8. Calculated Bragg peak positions and indexing for two typical 
reflection clusters in the vicinity of the quasicrystal peak: 12110 in 
(a) and 10000 in (b). The positions for the nan•domain structure 
are marked by crosses and for the decagonal quasicrystal by 
diamonds. Labels on the x (h) and y (k) axes are in ,~-t  referring to 
the orthorhombic C-centred setting of the nonrotated (4,6)- 
approximant, i = 0 . . . . .  4 denotes the amount of rotation by 27ri/5 
for the approximant orientation the reflections originate from. 
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atoms fit quite well and complete the structure motifs 
(Fig. 7). 

As  e x p e c t e d ,  s i m u l a t e d  d i f f r ac t ion  p a t t e r n s  o f  
unf i l l ed  a n d  filled d o m a i n  s t r u c t u r e s  c a n n o t  be  d is t in-  
g u i s h e d  as t h e  s c a t t e r i n g  p o w e r  o f  the  a d d i t i o n a l  
v o l u m e  is smal l .  Jus t  2 .75% a d d i t i o n a l  a t o m s  are  
n e c e s s a r y  to  fill all d o m a i n  b o u n d a r i e s  ent i re ly.  T h e  
c o m p u t a t i o n a l  e f for t ,  h o w e v e r ,  i nc reases  d r a m a t i c a l l y  
b e c a u s e  an  expl ic i t  F o u r i e r  t r a n s f o r m  has  to  be  

p e r f o r m e d  for  all a t o m s  o u t s i d e  t h e  c o m p l e t e  un i t  cells. 
H o w e v e r ,  a s igni f icant  e f fec t  is e x p e c t e d  for  the  distr i-  

bution and intensity of the diffuse scattering only while 
the Bragg intensities almost remain invariant. 

4.3. Comparison with H R T E M  results 

Most studies on approximants and quasicrystals 
carried out by transmission electron microscopy (TEM) 
concentrate on high-resolution (HR) images giving 
information about the local atomic structure. More 
global conclusions on the domain arrangement of 
microcrystalline approximants are scarce. Song et al. 
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Fig. 9. Comparison of calculated patterns: (a), (c) for the 8000 x 8000 x 4 A nanodomain structure model with high-resolution X-ray 
measurements; (b), (d) (parts from Figs. 8.5 and 8.6 of Kalning, 1996) at positions of the strongest quasicrystal reflections (a), (b) 10000 and 
(c), (d) 12110. Indices and directions (h, k) refer to the orthorhombic description of a single nonrotated approximant, dimensions on the 
simulated plots are in ,~-1 contour lines are plotted down to 10% of the maximum intensity. Crosses on the experimentally observed patterns 
indicate the theoretical positions of single approximant reflections in all possible orientations. 
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(1993) examined nanodomain structures of the (4, 6)- 
approximant in AI-Co-Cu alloys using TEM to observe 
lattice fringes. The micro~raphs show domains with 
dimensions between 100 A and more than 1000 A. 
Usually, all five possible domain orientations can be 
observed. There are images with small domains (less 
than 200 ,~) orientated randomly. Furthermore, a nearly 
star-like arrangement of five differently orientated 
domain systems, described as jagged bands of widths 
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Fig. 10. Comparison of the calculated pattern: (a) of an incoherently 
twinned one-dimensional quasicrystal (8000 x 8000 x 4 A) with 
high-resolution X-ray measurements; (b) (Fig. 6.7 of Kalning, 1996) 
at positions around the quasicrystal reflectioa 10000. Indices and 
directions (h, k) in the measured pattern refer to the orthorhombic 
description for a single nonrotated (4, 6)-approximant. Lines 
indicate the direction of the phason peak shift; the intersecting 
point is taken as ideal peak position for the decagonal quasicrystal. 

* 1 Dimensions on the simulated plots are in A - ,  the cross gives the 
exact position of the 10000 reflection for the decagonal structure. 
Contour lines are plotted down to 10% of the maximum intensity. 

ranging from 100 to 1000 .A expanding over even larger 
distances were found (cf. Song et aL, 1993, Figs. 3a, b, 
d). These observations closely resemble features 
present in the nanodomain model resulting from our 
simulations. However, the average domain size of the 
simulated structure is comparatively larger. 

5. Reciprocal-space studies 

5.1. Peak positions 

All reciprocal-space vectors H of the decagonal 
quasicrystal are given by equation (5), with respect to 
an integral indexing and quasicrystal reciprocal-space 
parameter a; (Steurer & Haibach, 1998a). Bragg-peak 
positions can be represented as vector components on a 

Fig. 11. Schematical representation of the preservation of the phase 
relationship between equally oriented domains separated by 
domains of different orientation (i.e. being in a reflection-twin 
relationship). The green-shaded domains preserve their phase 
relationship along the horizontal direction. The same is true for the 
blue-shaded domains. 
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Fig. 12. 1200 x 1200 ,h section of the decagonal model structure 
projected onto one centred orthorhombic unit cell of the average 
structure. The resulting 'averaged atoms' have the shape of two 
superposed distorted pentagons (i.e. of the atomic surfaces). The 
unit-cell parameters have been obtained by oblique projection 
(Steurer & Haibach, 1998b). The cell dimensions are given in A, 
projected AI atoms are marked by black dots, TM atoms by red 
dots. 
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Cartesian coordinate system in physical space: 

5 

n = Z h,a~, 
i=1 

a* = aq(COS(27ri/5), sin(2rri/5), 0), 

i = 1  . . . . .  4 and a; = a; (0, 0,1). (5) 

For each orientation of an approximant in the nano- 
domain structure, Bragg reflections can be indexed with 
three integers and its positions can be derived as for any 
periodic structure. In the case of incoherent scattering, 
peak positions for the complete domain structure result 
from the simple superposition of the reciprocal lattices 
of the approximants in five orientations (rotated by 
27ri/5, i = 0 . . . . .  4). Two reciprocal-space sections are 
shown in Fig. 8, where in the vicinity of a quasicrystal 
reflection clusters of approximant Bragg peaks could be 
observed in high-resolution experiments. 

5.2. Peak widths 

A nanodomain model of -t-4000 x -t-4000 × 4,4, 
leads to peak widths less than 1.3 X 10 -4/~k -1 

(FWHM). Analogously, an 8000 × 8000 × 4,4, quad- 
rant of the biggest model corresponds to a coherence 
length of about 8000 ,~. For comparison, approximately 
2.5 × 10 -4 ,~-1 are found in an ideally fivefold twinned 
approximant of -t-4000 x +4000 x 4 A, reproducing 
the 4000 A maximum extent of a coherently scattering 
twin individual. Thus, the nanodomain structure with 
coherent scattering from equally orientated cells, even 
if separated by domains of another orientation, shows 
sharper reflections as expected from the domain size. 
The peak widths are not affected by the size of the 
individual domains but by the maximum distance 
between coherently scattering structure motifs. Caused 
by size and shape of the domains, additional intensities 
are surrounding strong Bragg peaks (cf. Fig. 9c). 

5.3. Intensities 

The intensity distribution of the individual split 
reflections derived from the nanodomain structure 
indicates strong contributions from coherent scattering. 
Although the number of approximant unit cells is the 
same in each of the five possible orientations, peak 
heights differ by a factor up to three. This can best be 
seen in the vicinity of the 10000 quasicrystal reflection 
(Fig. 9a), where two approximant peaks coincide 
perfectly. For example, the summation of the 13,13,0 
and 13,13,0 reflections belonging to two differently 
oriented domains (rotated 4rr/5 and 6rr/5, respectively) 
leads to a six times larger intensity than the symme- 
trically equivalent 16,0,0 peak for the not rotated 
orientation. Thus, differently orientated domains 
cannot be treated as completely independently scat- 

tering. Calculations for differently generated nano- 
domain structures (see §8) show that the amount of 
coherent scattering strongly depends on the domain- 
size distribution. 

5.4. Comparison with experimental results 

Fettweis et al. (1994) performed high-resolution 
X-ray experiments at a synchrotron source (LURE) 
using the photographic precession technique. Their 
diffraction pattern analysis by identification of lattice 
parameters and angles undoubtedly confirms the 
examined sample to be a microcrystalline twinned 
(4, 6)-approximant. However, further conclusions 
concerning unit-cell decoration, domain size and 
distribution or the nature of domain boundaries were 
not possible. Recently, a reversible phase transforma- 
tion between a decagonal quasicrystal and a micro- 
domain structure of this specific approximant was found 
as a function of temperature (Fettweis et al., 1995). 

High-resolution two-dimensional scans in reciprocal 
space, allowing a comparison with our simulations, are 
available for several sections of the hkO layer around 
strong quasicrystal reflections (Kalning, 1996; Kalning 
et al., 1994). For one of the three samples examined, 
peak positions are matched best by a twinned (4, 6)- 
approximant model. The other two specimens are 
dominated either by the decagonal phase or by a one- 
dimensional quasicrystal as resulting from linear phason 
strain (Kalning et al., 1997). 

Simulations with five independent sections of a 
nanodomain model, each 8000 × 8000 × 4 ,~, repro- 
duce the diffraction pattern qualitatively very well (Fig. 
9). Kalning (1996) observed minimal peak widths of 
1.27 × 1 0 - 4 / ~  -1 (FWHM) for individual reflections 
corresponding to a coherence length of 8000A. 
However, the actual peaks in the experimental pattern 
seem to be broader than the calculated ones. Therefore, 
regions scattering coherently should be smaller than 
8000 × 8000 A on average. Calculations for smaller 
models, on the other hand, are dominated by subsidiary 
maxima (finite-size effects) allowing no direct compar- 
ison. The major deviation between observed and 
calculated patterns is the intensity distribution of the 
individual peaks. While the strongest intensity has been 
observed for the 16,0,0 reflection (Fig. 9b), this peak is 
almost absent in the calculated pattern (Fig. 9a). 
Kalning's experiments as well as the simulations show 
tenfold symmetry for the intensity distribution, i.e. the 
diffraction patterns are similar around all symmetrically 
equivalent 10000 quasicrystal reflections. Thus, a 
strongly unproportional presence of one domain 
orientation with respect to the five possible can be 
excluded as a reason for this observation. More likely, 
the kind of domain distribution and the decoration of 
the unit cells are responsible for the intensity distribu- 
tion within the split patterns. 
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6. One-dimensional quasicrystai as intermediate step in 
the phase transformation 

As mentioned above, various authors propose a one- 
dimensional quasicrystal to be involved in the phase 
transformation from a decagonal quasicrystal towards 
a three-dimensional periodic crystalline approximant 
(cf. Kalning et al., 1997). A structure periodic in two 
directions and quasiperiodic in the third one can be 
obtained by a homogeneous deformation (linear 
phason strain) of the five-dimensional periodic lattice of 
the decagonal quasicrystal (see §1). The phason strain 
concept has been worked out for the general decagonal 
case by Zhang & Kuo (1990). The diffraction vector H 
is split into its parallel (physical) and perpendicular 
space components H = H II 4-H±,T omitting the peri- 
odic direction a5 (=  ¢) which is not changed. 

4 4 
ni l  - -  Z hi a*ll; H i  ---- Z hi a*±, 

i=1 i=1 

where 

a~ II = aq[COS(2rci/5)e x 4- sin(2rri/5)ey], 

a~ ± = aq[COS(4rri/5)e x 4- sin(4rri/5)ey], 

i = 1  . . . . .  4 

i = 1  . . . . .  4. 

(6) 

For a one-dimensional quasicrystal resulting from linear 
phason strain (given as matrix M), the physical space 
diffraction vector can be formulated as 

where 

H~ - "  = H II MH~-dq c dqc --- H2 dqc 2 dqc -~- , 

M = (  mllm21 m22m12)" (7) 

Zhang & Kuo (1990) as well as Kalning et al. (1997) 
used the special case where mll  is the only non-zero 
component of M. Then, all Bragg peaks are shifted 
along the x direction, while the y component remains 
unchanged with respect to the two-dimensional quasi- 
crystal. It can be shown that the solution for M is 
unique; leading, together with fivefold twinning, to a 
diffraction pattern as observed by Kalning et aL (1997) 
(Fig. 10). 

Fivefold twinning can be described as a rotation by 
-27r j /5  acting on symmetrically equivalent diffraction 
vectors of domains in orientations rotated by 2Jrj/5 
( j  ---- 0 . . . . .  4). In the vicinity of the 10000 quasicrystal 
reflection, four of the five Bragg peaks in a fivefold 
twinned one-dimensional quasicrystal form a straight 
line parallel to 3,, as the x component of the physical 
space diffraction vectors results in: 

T Illustration and further discussion on reciprocal-space properties in 
nD space can be found in Steurer & Haibach (1998a). 

h~o -- aq*[mll cos(4:rri/5) cos(27rj/5) 4- 1], 

i - - - - j = O  . . . . .  4. (8) 

Combining equation (8) with an alternative equation 
for the x components of the diffraction vectors deduced 
using the known h index (in analogy to the nanodomain 
model) and the formalism for ordinary periodic struc- 
tures, the 'new' periodicity al dqc, depending on the two- 
dimensional quasicrystal constant aq, and the compo- 
nent mll  can be derived as 

aldpc ~ 2aq(r6/51/2) = 60.893.. .  ,A, 
(9) 

mll - -  8(51/2/ ' f  6) --  1 = 3.105. . .  x 10 -3. 

The simulated diffraction pattern of an incoherently 
fivefold twinned one-dimensional quasicrystal con- 
structed with this metric fits the observed data quite 
well (Fig. 10). The periodicity al dqc is exactly the same 
as ao for the C-centred (4, 6)-approximant. Linking the 
basic clusters is possible with different distances 
between the cluster centres (as illustrated in Steurer et 
al., 1993). A long distance L can be assigned using the 
shortest interatomic vector: 

L = aq 2 r3(2 + ,F)l/2 = 19.78.. .  ,A. (10) 

Five clusters in a pentagonal arrangement (super- 
clusters) with edge length L are frequently observed by 
HRTEM in AI-Co-Ni quasicrystals as well as in 
approximants (cf. Ritsch, 1996). Moreover, two of these 
superclusters are found to share an edge aligning anti- 
parallel. This structure motif defines exactly the a 
direction of the centred orthorhombic approximant cell 
(ao is perpendicular to the shared edge of the super- 
clusters with ao as the distance between the outermost 
cluster centres). 

The formation of superclusters in the decagonal 
quasicrystal along all five possible directions (symme- 
trically equivalent to the orthorhombic a direction) 
causes a dentritic growth of a fivefold twinned one- 
dimensional quasicrystal. For the first several hundred 
~ngstr6ms, shifts are mostly simple flips, while during 
further propagation other distances appear. This 
dentritic growth is able to preserve the structure-factor 
phase relationship over distances larger than the 
approximant-domain diameters. The phase relation is 
not lost in one dimension if and only if neighbouring 
domains have an orientation relationship of 4-2rr/5 
(Fig. 11). Thus, even zigzag chains of adjoining super- 
clusters result in diffraction patterns similar to the 
twinned one-dimensional quasicrystal and could be a 
kind of precursor to crystalline nanodomain structures. 

7. Scenario for the phase transformation 

The results of our simulations on the phase transfor- 
mation supported by experimental observations indi- 
cate the following scenario: 
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First stage: phason-driven local nucleation of nano- 
crystalline approximant domains in the quasicrystal 
matrix by single flips of a small number of atoms. The 
globally averaged structure of the nanocrystalline 
domains separated by extended discommensurations is 
quasiperiodic. 

Second stage: quasi-one-dimensional (dentritic) 
growth of crystalline domains by flips and small atomic 
displacements. The globally averaged structure corre- 
sponds to that of a fivefold twinned one-dimensional 
quasicrystal. 

Third stage: further growth of the approximant 
domains; energy minimization of the domain structure 
preserving complete clusters leads to smooth domain 
boundaries. The resulting average structure is that of a 

fivefold twinned (4, 6)-approximant with a correlation 
length far beyond the individual domain size. 

8. Influence on the domain distribution of slight 
structural changes of the periodic approximant 

As mentioned in §5.4, the domain distribution resulting 
from the presented mechanism cannot quantitatively 
reproduce the observed diffraction patterns (Kalning, 
1996) concerning the intensity distribution. To investi- 
gate possible reasons, simulations were performed with 
approximant structures slightly altered in their metrics, 
as demanded by the following structural considerations. 
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Fig. 13. (a) Nanodomain structure resulting from an approximant 
structure rescaled according to the periodic average structure of 
the decagonal quasicrystal. The region around the origin is shown 
(8000 A in diameter). The different domain orientations are 
indicated by different colours. The calculated diffraction patterns 
are shown for the two prominent reflection clusters in the vicinity 
of (b) 10000 and (c) 12110 decagonal quasicrystal Bragg peaks 
based on the nanodomain structure given in (a). For (b) and (c), 

* 1 dimensions are in A - ,  contour lines are plotted down to 10% of 
the maximum intensity. 
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8.1. Effects o f  the periodic average structure o f  a 
decagonal quasicrystal 

Not only one-dimensional quasicrystals like the 
Fibonacci sequence but also the Penrose tiling has a 
discrete periodic average structure (Steurer & Haibach, 
1998b). As the quasicrystal model used here is based on 
a subset of vertices of a Penrose tiling, it exhibits a two- 
dimensional average structure as well (Fig. 12). This 
average structure can be achieved by an appropriate 
oblique projection of the four-dimensional structure 
onto the two-dimensional physical space. The metrics of 
this cell is given by equation (11) for one of the five 
possible orientations in orthorhombic centred notation, 
using ap, the edge length of a Penrose tile and the 
quasicrystal constant aq. Note that a and b vectors were 

chosen a II ao (approximant) and b II bo. 

a -- (3 - rg)apaq; b -- ( l / r ) (3  - "c)3/2apaq, 
with ap - -~ r .  (11) 

Comparing the unit-cell dimensions of the (4, 6)- 
approximant with those of the averaged quasicrystal 
structure, one finds a slight mismatch of 3.1%o in the a 
direction and less than 0.2%0 in the b direction. Thus, 
the approximant and the quasicrystal have a common 
average structure within this mismatch. The presence of 
a periodic part in the quasicrystal potential and in the 
mass density waves may be one of the driving forces in 
the formation of this particular approximant and the 
domain structure. 
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Fig. 14. (a) Nanodomain structure around the origin (8000 A in 
diameter), resulting from an approximant structure rescaled 
according to possible layer flattening. The different domain 
orientations are indicated by different colours. The calculated 
diffraction patterns are shown for the two prominent reflection 
clusters in the vicinity of (b) 10000 and (c) 12110 decagonal 
quasicrystal Bragg peaks based on the nanodomain structure given 
in (a). For (b) and (c), dimensions are in ,&-l, contour lines are 
plotted down to 10% of the maximum intensity. 



386 PHASE TRANSFORMATION OF DECAGONAL A1-Co-Ni 

However, scaling all interatomic distances in a way to 
obtain the approximant being an exact integral super- 
structure of the averaged quasicrystal unit cell leads to 
completely different peak arrangements in the diffrac- 
tion patterns. This can easily be understood from the 
deviation from the exact 108 ° angle in the monoclinic 
unit-cell description. Thus, deformations following the 
periodic potential have to be homogeneous. Consid- 
ering the quasi-one-dimensional growth as implication 
of supercluster ordering, no reason to distinguish 
between the symmetry-related directions in the 
decagonal quasicrystal exists. A homogeneous defor- 
mation by a factor f scaling ao to the next integer 
multiple of a (f = 18/r  6) was applied. Subsequent 
calculations as described in detail above lead to a 
nanodomain structure with many very small individual 
approximant domains (mostly less than ten unit cells in 
diameter) that still mimic the quasicrystal symmetry 
with a kind of noisy distribution in the central part (Fig. 
13a). The 16400 unit cells are equally distributed 
between the five possible orientations (for each 3280 
cells are present).° Fourier transformation of this single 
8000 × 8000 × 4 A model shows surprisingly less 
subsidiary maxima. Nevertheless, it is nearly identical to 
the patterns observed from the original nanodomain 
structure, apart from an overall metric scaling (Figs. 
13b, c). 

As the actual change in atomic positions is very 
small, the volume does not increase remarkably during 
the phase transformation of the decagonal quasicrystal 
to the rescaled approximant. Consequently, no strong 
strain fields in the partly transformed sample are to be 
expected. It is noteworthy that the scaling applied here 
can easily be included into the deformation of the nD 
periodic lattice necessary to derive an approximant for 
the decagonal quasicrystal. 

8.2. Flattening o f  puckered atomic layers in the 
quasicrystal 

The idealized quasicrystal structure consists of two 
fiat layers Aa (§2.1). However, the structure this model 
is based on should show a puckering of about -t-0.3 ,~ in 
one of the layers (Steurer et aL, 1993). This puckering 
plays a certain role in ordering transformations in 
decagonal AI-Co-Ni quasicrystals (Steurer et aL, 1998). 
For a °puckering of -t-0.3 A, a slight flattening by 
"-,0.05 A would result in a 2%0 expansion of  the clusters 
in the (xy) plane. Unfortunately, no reliable informa- 
tion concerning puckering is available. 

Model calculations have been performed with the 
lattice constant of the monoclinic approximant 
expanded by 2%0 to 51.90 ,&. The calculations give a 
different domain  distr ibution (Fig. 14a). The indivi- 
dual domains are still rather small but on average larger 
than for the domain model described in §8.1. Especially 
in the central part, the domains are shaped regularly 

with straight lines defining the domain boundaries. In 
the outer parts, larger and smaller domains appear in 
alternating rings. In total, 16417 cells are present, 
about 3300 in each possible orientation. Simulated 
diffraction patterns for this nanodomain structure 
(8000 x 8000 x 4 A) qualitatively show the same 
typical reflection clustering as the preceding models. In 
contrast, they reproduce the intensity distribution 
within the pattern as was observed experimentally by 
Kalning (1996) quite well (compare Figs. 14b and c with 
9b and d). 

9. Concluding remarks 

A mechanism is presented for the transformation from 
the decagonal AI-Co-Ni phase to an orientationally 
twinned crystalline nanodomain structure via an inter- 
mediate one-dimensional quasiperiodic state, based on 
only small atomic displacements. It leads to small 
domains with correlation length far beyond the indivi- 
dual domain size. The simulations are in good agree- 
ment with the experimental observations in direct 
(HRTEM studies) as well as in reciprocal space (high- 
resolution X-ray diffraction). 

For an experimental proof of the suggested 
mechanism, very accurate high-resolution X-ray 
diffraction studies are needed. Quasicrystal and 
approximant lattice parameters have to be measured as 
a function of temperature on one and the same sample 
during the reversible phase transformation. 
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